Model Selection for Convolutive ICA with an Application to Spatiotemporal Analysis of EEG

نویسندگان

  • Mads Dyrholm
  • Scott Makeig
  • Lars Kai Hansen
چکیده

We present a new algorithm for maximum likelihood convolutive independent component analysis (ICA) in which components are unmixed using stable autoregressive filters determined implicitly by estimating a convolutive model of the mixing process. By introducing a convolutive mixing model for the components, we show how the order of the filters in the model can be correctly detected using Bayesian model selection. We demonstrate a framework for deconvolving a subspace of independent components in electroencephalography (EEG). Initial results suggest that in some cases, convolutive mixing may be a more realistic model for EEG signals than the instantaneous ICA model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent Component Analysis in a convoluted world

This thesis is about convolutive ICA with application to EEG. Two methods for convolutive ICA are proposed. One method, the CICAP algorithm, uses a linear predictor in order to formulate the convolutive ICA problem in two steps: linear deconvolution followed by instantaneous ICA. The other method, the CICAAR algorithm, generalizes Infomax ICA to include the case of convolutive mixing. One advan...

متن کامل

Model Structure Selection in Convolutive Mixtures

The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimoneous representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

Noninvasive Imaging of Independent Cortical Flow Patterns

View NONINVASIVE IMAGING OF INDEPENDENT CORTICAL FLOW PATTERNS. While independent component analysis (ICA) is useful for modeling brain and electroencephalographic (EEG) data, current ICA methods for EEG model signal sources as acting in perfect synchrony within spatially fixed domains. In contrast, invasive animal recordings have observed waves of neuronal activity propagating quickly across m...

متن کامل

Complex independent component analysis of frequency-domain electroencephalographic data

Independent component analysis (ICA) has proven useful for modeling brain and electroencephalographic (EEG) data. Here, we present a new, generalized method to better capture the dynamics of brain signals than previous ICA algorithms. We regard EEG sources as eliciting spatio-temporal activity patterns, corresponding to, e.g. trajectories of activation propagating across cortex. This leads to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2007